
Fermi National Accelerator Laboratory

FERMILAB-Pub-87172
2300.000

Evaluation of the FPS-164 Computer
for High Energy Physics Pattern Recognition Problems*

L. Roberts
Computing Department

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

May 1987

*Submitted to Computer Physics Communications.

orated by Universities Research Association Inc. under contract with the United States Department of Energy

FERMILAB-Pub-%‘/72
May 1987

Evaluation of the FPS-164 Computer for
High Energy Physics Pattern Recognition Problems

Lee Roberts

Computing Department
Fermi National Accelerator Laboratory

P. 0. Box 500, Batavia, IL 60510

ABSTRACT

Vectorized pattern recognition algorithms have been compared to tradi-
tional scalar algorithms in single-view detectors on the FPS-164 Scientific
Computer. The vectorization has been limited to the track recognition
phase of the data analysis. Results show that the traditional scalar algo-
rithm outperforms the vectorized algorithms on the FPS-164 in chamber
multiplicities of physical interest.

Evaluation of the FPS-164 Computer for
High Energy Physics Pattern Recognition Problems

I. Introduction

The application of modern computer architectures to pattern recognition problems in

high energy physics has recently become a topic of considerable interest. Several recent ar-

ticles, including those written by Georgiopoulos’ et al., Becker2 et al., and Zacharov3 have

outlined algorithms for data analysis programs on machines with vector and/or parallel ar-

chitectures. Georgiopoulos et al. claim a substantial speed advantage for their (Cyber 205)

vector architecture over scalar architecture (VAX-11) in the data analysis of Fermilab ex-

periment E-711. Their conclusions run counter to the commonly-held belief among high

energy physicists that vector computers are not suitable for high energy physics pattern

recognition problems. This has stimulated interest in applying these new architectures to

high energy physics problems.

The Floating Point Systems FPS-164 Scientific Computer was chosen for study be-

cause it offers an advanced computer architecture-multiple functional units-with fea-

tures expected to be similar to supercomputers (Cray, Cyber 205) and because of its

availability at Fermilab. The FPS-164 functions as an attached processor to a general-

purpose front-end computer. At Fermilab, the front-end computer is a VAX 8600. Two

methods of program execution are available on the FPS-164. These are:

1) execution of the complete job in the FPS-164
2) execution of a main program on the front-end computer (VAX) with

computationally-intensive subroutines run on the FPS-164.

Programs for the FPS-164 may be written in FORTRAN (APFTN64 cross-compiler) or

assembler (APAL cross-assembler) and are linked with the APLINK cross-linker. The

APMATH64 subroutine library provides efficient mathematical routines for use in FOR-

TRAN or assembly programs.

The FPS-164 architecture has three major features:

1) multiple functional units
2) multiple interconnections
3) multi-operation instructions.

There are a total of ten functional units, which include two memory units, three register

units, three computational units and two control units. Simultaneous operations can occur

in each unit, and each unit may initiate a new operation each CPU cycle. Effective

utilization of the FPS-164 therefore requires code that can utilize all of the functional

units during each machine cycle. Efficient code can be produced by using appropriate

APMATH64 routines and through careful FORTRAN programming (or APAL assembly

programming). The APFTN64 compiler provides several levels of optimisations, including

software pipelining. Software pipelining involves overlapping operations performed during

one iteration of a loop with other iterations of the loop so ss to utilize all of the CPU

functional units during each cycle.

II. Algorithm types

A. Scalar algorithm

The scalar algorithm for high energy physics pattern recognition is the traditional

method, i.e., the algorithms employed on the scalar computers that have been available

to the experimenters. Events are analyzed sequentially by these algorithms-the contents

of each event is fully examined before the next event is input. These algorithms generally

require large quantities of floating point arithmetic and memory accesses during the track

recognition process.

A scalar algorithm for track recognition in a typical fixed-target experiment would

behave as follows. Numerical constants for the position of each detector plane, wire spac-

ings in each plane and orientation angle of each plane would be calculated and/or stored

for future use. Each view of the detector would then be searched for tracks--often several

passes (searches) through the chambers are required to find tracks of varying pedigree.

For example, tracks which contain hits in all planes of the detector are often found first,

and the data (hits) corresponding to these tracks may be removed from the data set to

eliminate confusion when searching for tracks having missing hits or different signatures.

Each track consists of required defining hits and confirming hits. The number of defining

hits is the minimum number required to establish a unique track. For example, a straight

track requires two defining hits, whereas a track with a single bend (due to a magnet)

requires three defining hits. A scalar algorithm for finding straight tracks would use the

hits present in two (usually predefined) planes as possible defining hits. Using loops over

2

the hits in the defining planes, all combinatoric possibilities of defining hits for straight

tracks would be considered. For each possible combination, the coordinates of confirming

hits within the detector plane would be calculated-and the data would be searched for

these hits. Confirming hits are “found” if a hit exists within an experimentally-determined

distance of the computed coordinate. If a sufficient number of confirming hits is found,

this combination of defining and confirming hits becomes a track. After tracks have been

independently found in the each of the views, track matching must be performed on the

one-dimensional view tracks to form the real three-dimensional tracks. The track matching

operation may include some amount of track fitting to determine valid matches. After the

three-dimensional tracks have been identified, the physics analysis of the event can begin.

The scalar track-finding algorithm uses a substantial number of floating-point oper-

ations. For each set of possible defining hits, the coordinates of all possible confirming hits

must be calculated. Equations for track coordinates are usually linearized to reduce the

amount of computation-calculations require simple multiplications and additions rather

than special mathematical functions. Often-used quantities such as distances between de-

tector planes or their ratios should be calculated once and stored, but the track coordinates

are recomputed ss necessary for each event. Scalar algorithms can require nearly mini-

mum amounts of memory-memory for the raw event data, the pattern recognition output

and detector position and alignment constants is necessary, but little else. Memory use is

limited at the expense of CPU time for repeated floating-point operations.

Production scalar track-finding algorithms often use FORTRAN “data structure”

memory-management packages (HYDRA, ZBOOK, ZEBRA) as well as other common

high energy physics library routines (CERNLIB). (Histogramming packages (HBOOK)

are often used as part of the physics analysis portion of the data analysis code.) These

packages are not presently available on the FPS-164. The scalar algorithms tested on the

FPS-164 cannot mimic the production codes in this respect. The lack of FORTRAN “data

structure” packages may be an advantage for the scalar codes on the FPS-164. APFTN64

guidelines’ for efficient FORTRAiVprograms make the following recommendations:

l Avoid using scalar variables in loops if the variables share a storage location
with another variable (through the use of the EQUIVALENCE statement).
Optimizations cannot be performed on such variables.

s

. Avoid using arrays which share storage locations with another array or vari-
able (through the use of the EQUIVALENCE statement). especially in loops
on which software pipelining can be performed (pipelinable loops).

In general, equivalence statements complicate the global data flow analysis of optimizing

compilers-limiting the optimizations that can be performed.

B. Multi-scalar algorithm

The multi-scalar algorithm is derived from the above scalar algorithm using the

invariant coding techniques presented by Zacharov.3 An algorithm that is invariantly coded

requires the same number of CPU cycles to process any event. This procedure may also

involve restructuring of the data so that the data itself is invariant in form. Conversion

of scalar variable code to scalar invariant code often requires assuming Yworstn cases

or performing sometimes unnecessary steps to maintain code length for all events. The

scalar invariant code thus obtained can be run in parallel-many events can be processed

simultaneously. Such algorithms may be useful on pipelinable machines or on SIMD (single-

instruction multiple-data) parallel processors.

The computational resources required by a multi-scalar algorithm are closely related

to the scalar algorithm. Memory requirements per event may be smaller*nly one copy

of the detector specifications may be necessary-of course, memory for the raw data and

pattern recognition output of each event are still necessary. The amount of floating point

computation per event will usually be larger due to the “unnecessary” work performed

in order to obtain the invariant code. The goal of this technique is to keep this ineffi-

ciency small so that the speed advantages of parallel processing will yield a significant

speed increase. Horizontal parallelism (or vectorization) is the goal of the invariant coding

technique*fficiency can be obtained by processing many events simultaneously, using

algorithms closely related to the traditional scalar algorithms described above.

The implementation of the algorithm on the FPS-164 used APMATH64 subroutines

and pipelinable loops to achieve this horizontal vectorization. Most of the scalar algo-

rithm could be made invariant. The length of vectors in APMATH64 subroutines and the

length of pipelinable loops is a variable factor. APMATH64 vector routines can be most

useful when replacing loops, except when short (iteration count less than 60) loops are

involved. Since the FPS-164 pipelining is done in software, rather than hardware, speed

4

advantages for loops of special lengths (lengths corresponding to multiples of hardware

pipeline lengths) are not expected. However, longer loops reduce the amount (per event)

of overhead involved in APMATH64 calls and in starting pipelinable loops. In this case,

the length of the loops corresponds to the number of simultaneously processed events-and

memory constraints will provide a limit on the loop size.

C. Vector algorithms

Vector algorithms for pattern recognition generally use new approaches and tech-

niques, as efforts to vectorise the “slow” parts of the traditional scalar algorithms are un-

productive. Dictionary look-up approaches have been used in vectorizable analysis codes

for experiments Fermilab E-711’ and SLAC Mark IILa Both algorithms utilize a precal-

culated dictionary containing all tracks of physical interest through the chamber and the

hits that create these tracks. A non-numerical approach can then compare the data hits to

the dictionary in order to And the existing tracks. Existing data analysis codes have been

successful in vectorizing the pattern recognition algorithm and the event data unpacking

and packing routines. Vector algorithms for track matching and physics analysis remain to

be developed, if such vectorization can be achieved. In the case of Fermilab E-711, which

has the only vectorizable data analysis code actually running on a vector processor, the

published program data1 do not detail the proportion of the speed increase due to vec-

torization of the event data unpacking and that due to the vectorised pattern recognition

algorithm.

Creation of the track dictionary is a non-trivial endeavor. All possible hit combi-

nations that can represent tracks of interest must be enumerated. Track dictionaries for

all desired track pedigrees must be created-traight tracks, one-bend tracks, etc. One

quickly realizes that an enormous number of tracks can pass through a typical detector-

and in a typical fixed-target detector, the dependence of track numbers on wire numbers

is quadratic (twice as many wires-four times as many tracks). The approach taken in

the E-711 analysis code is to define a virtual detector with one-third as many wires as

the real detector. (The number of straight-line tracks in the virtual views of E-711 is still

(31744, 22528, 38912, 38912}5.)

The approach taken by Georgiopoulosl et 01. in the E-711 analysis code is to create

5

a vectorized loop through the track dictionary for each of the detector planes. On each

iteration, the wire specified by the dictionary entry is checked for a hit; if the wire has

been hit, a counter for the corresponding dictionary entry (track) is incremented. After

this has been done for all detector planes, the counters contain the number of hits on each

track through the detector. Since the E-711 detector has four planes, track counters having

values of 3 or 4 are accepted as candidate tracks. These candidate tracks are then cleaned,

fitted and matched in three dimensions by scalar-type code before physics analysis can

take place.

A more sophisticated algorithm is used in the Mark III analysis code.a This algorithm

was designed to be vectorizable, even though the target machine wss an IBM 3081K. This

algorithm uses a track dictionary that has been sorted by wire for each detector plane.

Plus, an auxiliary track list is kept-this list identifies tracks that become indistinguishable

when one or more of their hits are missing. Rather than loop over the track dictionary,

loops over detector wires are performed. For each detector wire that has been hit, counters

corresponding to all tracks that pass through that wire are incremented. In addition, a bit-

mapped array where each entry corresponds to the hits in 32 tracks is also kept. Searches

for found tracks now proceed by checking the bit-mapped array for banks of 32 tracks

that contain hits in all planes; tracks corresponding to such an entry are then searched for

entries with no missing hits-and these are accepted as candidate tracks. Then, the tracks

on the auxiliary lists for these candidate tracks are eliminated from the possible tracks,

and a search is performed for tracks with one missing hit. This procedure continues until

all desired tracks are found.

These vector algorithms obviously require large amounts of memory for storage of the

track dictionaries. The necessary storage for the Mark III algorithm is several times larger

than for the E-711 algorithm, as the lists of tracks through the detector wires and the

auxiliary track lists are quite large. These algorithms require relatively little floating point

arithmetic-most of the pattern recognition is done using bit manipulation or logical tests.

Vector algorithms may perform some excess work, particularly in regard to tracks with

missing hits. Only one pass through the data is used to obtain all the possible tracks-the

auxiliary lists (or an equivalent scheme) must be used to eliminate meaningless partial

tracks from the ‘found” candidates.

Variations of both of these algorithms have been implemented on the FPS-164. The

vectorized loops of the E-711 algorithm (which are Cyber 205 specific function calls) trans-

late to pipelinable loops on the FPS-164. The Mark III algorithm on the FPS-164 depends

upon pipelinable loops for execution efficiency.

III. Studies Undertaken & Results

A. Single-View Detector: 6 planes x 10 wires

A simple detector with five planes of ten wires served ss the first toy model. Wires

were equally spaced at 2.5 mm in all detector planes. Detector planes were separated by

90 cm. The input tracks passed through all detector planes and were randomly created

(tracks did not originate from a common point). Programs using each of the above al-

gorithms were written to find complete tracks (tracks with no missing hits) in the toy

detector. Short tests of these programs were run on both the FPS-164 and various VAX

computers where the code was compatible (or nearly so). The effect of APFTN64 compiler

optimization level was also briefly evaluated. All programs were tested on the FPS-164

under varying conditions of track multiplicity and detector noise.

Table 1 shows representative CPU times for the pattern recognition programs on a

variety of CPUs and under different optimization conditions. The details of the program

contents will be described below. CPU times for versions of the programs with and without

formatted I/O are also shown. (Timing tests for the various algorithms w&8 done without

formatted I/O.) It is clear that a substantial penalty is paid for formatted I/O on the

FPS-164.

A single version of the scalar program was developed. Each event was scanned on

input to obtain the number of hits in each chamber and to reduce each detector plane

to a list of hit wires-consolidating the data into a tight, easily accessed structure. The

first and last detector planes were taken as the defining planes for the detector. The

traditional scalar algorithm was then applied, requiring confirming hits in all three inner

planes to create the candidate five-chamber track. This program was tested briefly on

the VAX and was compared to the FPS-164 results in order to gain some feeling for the

relative speeds of the machines. The scalar results on the FPS-164 were expected to be

of particular interest, especially when compared to the vector algorithms; a difficulty with

7

computer
/compiler

VAX-111785
VAX 8600
VAX 8650

FPS/opt=O
FPS/opt=4

CPU time
(no output)

Scalar Algorithm
2.22
1.10
0.67
1.68
1.13

CPU time
(output)

24.11
10.39

7.61
25.73
25.08

I I

Multi-Scalar/200 Algorithm
FPS/opt=O 4.42 41.57
FPS/opt=4 3.16 39.96

, -

FPS/opt=o
FPS/opt=4

FPS/opt=O
FPS/opt=4

I I
Vector Algorithm #0

24.32 65.48
14.12 54.46

Vector Algorithm #l
26.37 67.62
12.80 53.42

VAX 8650

I

Vector Algorithm #2
1.74 12.20

FPS/opt=O 5.20 45.86
FPS/opt=4 3.05 43.89

Table 1 CPU times in seconds for pattern recognition of five-chamber treks on
loo0 eventa containing O-5 input tracka. Results with and without output demon-
strate the effect of formatted I/O. Compiler optimisation options are shown for the
FPS-164.

interpretation of the E-711 results is the lack of a scalar algorithm which also executed on

the Cyber 205-only crude arguments regarding the scalar speeds of the Cyber 205 and

VAX were given. A direct comparison between scalar and vector algorithms would more

satisfactorily demonstrate any advantage gained by vectorization.

The multi-scalar program developed for this toy detector had the degree of parallelism

(number of simultaneously-processed events) sa a parameter. The above scalar algorithm

was modified to produce (nearly-)invariant code. The input events are scanned as in the

scalar algorithm above, but in each plane, the matimum number of hits in any event must

be used as the number of hits for all events. Extremely-large computational values are

used ss dummy hits so that track matches cannot occur for invalid data. In Table 1, the

multi-scalar listing is for 200 simultaneously-processed events. The multi-scalar program

was tested at several parallelism values. As expected, CPU requirements decreased with

8

increased parallelism. Figure 1 displays the CPU time versus degree of parallelism for

pattern recognition of five-chamber tracks on 20 000 events. Parallelism values were chosen

to allow the full number of events to be processed on all iterations.

innn L’ ’ . ’ I ’ - ’ ’ I ’ ’ ’ ’ I ’ ’ ’ ’ I ’ ’ ’ ‘-I

parallel
Figure 1 CPU times in aeconda versus degree of parallelism for multi-scalar al-
gorithm. Pattern recognition input is 20000 eventa containing five-chamber input
tracks.

PATTERN) aero input tracks DOTS) four input tracks
DOTDASH) two input tracks SOLID) six input tracks

DASHES) eight input tracka

Several variations of vector algorithms were developed and tested for this toy de-

tector. There are 526 possible five-chamber tracks in this toy detector. Vector algorithm

#0 listed in Table 1 is an E-711 type algorithm. This algorithm uses pipelinable loops

over the planes in the track dictionary. The dictionary was stored in 526 64-bit words by

packing each wire number of the track into a 1Zbit field. The algorithm then used the

extractt APFTN64 intrinsic function to extract the wire numbers for comparison with

the event data. The program loops over each plane in the track dictionary, comparing the

track wire numbers to the event data and incrementing hit counters when hit wires are

found. After the loops through all planes have been completed, hit counters with a value

of five correspond to the five-chamber tracks.

t The first version of this program used an APMATH04 library subroutine, axtru, to extract the bit
fields. The axtru version of the program required approximately 76% more CPU time than the axtract
version presented M vector algorithm #O.

9

A slight modification of vector algorithm #0 yielded vector algorithm #l. Algorithm

#1 stores each track of the track dictionary in five 64-bit words rather than packing all

five wire numbers into one 64-bit word. This yielded some advantage in program speed,

as the APFTN64 intrinsic function extract was not necessary on each dictionary loop

iteration. However, the dictionary is five times larger than in vector algorithm #O. All

other aspects of vector algorithms #0 and #l are identical.

Vector algorithm #2 is a Mark III type algorithm. This algorithm contains the

526track dictionary (used only for reference upon track output via formatted I/O) and a

dictionary of track lists sorted by wire for each detector plane. The track lists are stored in

a three-dimensional array indexed by track index, wire number, and detector plane. The

maximum track index is 101, as this is the maximum number of tracks through any wire

(computationally observed). An additional array (indexed on wire number and detector

plane) provides the number of tracks through each detector wire. This algorithm loops

over the detector planes, checking each wire for a hit. When a hit is found, the track list

for that wire, which contains all tracks which pass through that wire, is scanned and the

hit counters for the corresponding tracks are incremented. After the loops through the

detector have been completed, hit counters with a value of five correspond to the five-

chamber tracks. This algorithm requires a substantial amount of memory-the track list

dictionary is approximately twice as large as the unpacked track dictionary (which is also

part of this algorithmt).

All programs read the same input file containing the events to be analyzed. Events

were generated by a Monte Carlo generator which output the events as an unformatted

array of logical values with a value for each detector wire (.TRUE.==+hit wire). Files

containing unformatted dumps of the track dictionaries were prepared for efficient input

by the vector algorithms. In this way, the timing results for the test programs correspond

as closely as possible to the pattern recognition CPU requirements. Figure 2 presents

results for CPU times versus number of input tracks in the events. NOTE: The CPU

$ A version of this algorithm with a packed dictionary wan produced and tested. However, the raw
track dictionary is only used during the formatted output phase, ~10 the pattern recognition differences are
insignificant.

10

times are plotted against the theoretical number of tracks created in the Monte Carlo

detector--NOT the numberoffound tracks, which can become quite large for high chamber

multiplicities. Results for all of the above algorithms are shown. The events contain only

five-chamber tracks; no noise has been simulated. All tests have been performed with no

formatted I/O and with APFTN64 optimization level 4. The vector algorithms contain no

tunable parameters. The tunable parameters were adjusted for the scalar and multi-scalar

algorithms so as to yield results consistent with the output of the vector algorithms.

300
- !..-..-..-.

:_.._..__. J .__._-..-. :-..-..-” ,
.._.._.._.._.._.._..

- *_._._.-.-.-. _._._._.-.-.-.--
..-. J

250

te - a 200

g
0 160 -
:: : .? _ : _

2 100 7 . ..*
.+

u
50 -*_--c--

0 I I I
0 2 4 6

number of tracks
Figure 2 CPU times in seconds versw number of five-chamber Monte Carlo tracks
present in input events. CPU times represent the analysis of 20000 events.

SOLID) Scalar Algorithm PAITERIJ) Vector Algorithm #0
DOTS) Multi-Scalar Algorithm DOTDASH) Vector Algorithm #l

DABHXS) Vector Algorithm #2

As expected, the CPU requirements of the scalar algorithm increase considerably

with increasing chamber multiplicity. The multi-scalar algorithm, because it always be-

haves as a “worst case= scalar algorithm, has CPU requirements that rise much more

rapidly than the scalar algorithm. The vector algorithms #0 and #l are expected to

behave nearly-independently of chamber multiplicity-Figure 2 appears to confirm this.

Vector algorithm #2 should behave approximately linearly with the total number of de-

tector hits. The decrease in slope of its curve in Figure 2 as the chamber multiplicity

increases is evidence of this (overlapping tracks at high multiplicity==+fewer additional

hits per track). Clearly, none of the vector algorithms outperforms the scalar algorithm

for reasonable chamber multiplicities.

11

Further refinements of the vector codes yielded some gain in efficiency. No profiling

program was available on the FPS-164; such a program might have been very useful. An

important question was whether the vector algorithms were using the FPS-164 as effectively

as possible. The APFTN64 compiler can output the generated machine code into its listing

file. Machine code listings were studied for the scalar codes and the vector codes. These

studies were non-quantitative. Nonetheless, the vector codes appeared to have a higher

frequency of NOP instructions and a higher percentage of instructions appeared to address

a small number of the CPU’s functional units. Loop unrolling* is suggested4 as a means

of increasing program speed in APFTN64 when compiling at optimization levels 1 or 2.

At optimization levels above 2, loop unrolling is expected to give little improvement or

even slow execution. Several loops with high iteration counts but with short loop bodies

were unrolled to varying degrees. As forewarned, unrolling of some loops caused slower

execution. However, unrolling of several major loops resulted in speed increases of 19.5%

to 22.7% for vector algorithm #l and 6.7% to 15.4% for vector algorithm #2. (Speed

increases were approximately 54 seconds for #I and 6 seconds for #2 in the tests presented

in Figure 2.) On loops which responded to unrolling, tests were performed to determine

the optimum level for unrolling. These loops showed decreasing marginal improvement as

unrolling increased. All of the tested loops showed saturation of the speed increases at

unrolling levels of three to six iterations.

The above algorithms were also tested with random noise present in the Monte Carlo

events. Noise was created by selecting wires at random throughout the detector and placing

hits on those wires. No inefficiencies were included in the simulation. Noise was measured

in terms of the number of wires randomly hit (regardless of whether a track hit the wire)

throughout the detector. Studies were performed with varying amounts of noise on samples

which included one, three or five Monte Carlo tracks as input. These results are shown

* Loop unrolling is demonstrsted by the following loop transformation. Consider the loop below.
DO 100 I = 1 , 000

100 A(I) = a(I 1 * C(I)
Unrolling this loop to calculate three elementa of A during one iteration yields the following loop.

DO 100 I - 1 , 600 , 3
A(I) = B(I) * C(I)
A(I+l)=B(I+l)*C(I+l)

100 A(I+2)=B(I+2)*C(I+2)

12

300 c I I I I
.._.._.._.._..__._..-..-..-.-..-.. -..-..-..-------- -..-..-..-..-.. a./

250 L_._._._._.-.-.-.-.-.-.-.-.-.-.-.-.=

t

200 -

0 160 -
zi
2 100 -
u_._.---_

- - -
50 -- - - - - -

_ _ _ - - 7.,,d.-'-

.,......
. 1.

O- I I I I
0 2 4 6 8 10

amount of noise
Figure s CPU times in seconds versw number of noise hits present in the detector.
0~ five-chamber Monte Carlo track ia the underlying event. CPU times represent
the analysis of 20000 events.

SOLID) Scalar Algorithm PAIT!XtH) Vector Algorithm #0
DOTS) Multi-Scalar Algorithm DOIDABH) Vector Algorithm #I

DAgHlW Vector Algorithm #2

300 . ..-..-..-..-.. .._.._.._ .._.. _.._I._.. _.__. _.._.._.._..- ..-..-..---.
L._._._.-.-.-.-. _._._._.-.-.-.-.-.-.~

250 7

M 200 -
a
g
0 160 -
:-

.- _
. ...-*

c 100 7
. ..-.

. ..-
.

u ,.<‘, _ _ - - - __----- - - - - 7.C
50 7 /.-...

.

0 I I I I
0 2 4 6 8 10

amount of noise
Figure 4 CPU times in seconds ~eraus number of noise hits present in the detec-
tor. Three five-chamber Monte Carlo tracks are the underlying event. CPU times
represent the analysis of 20 OQO events.

SOLID) Scalar Algorithm PATIERU) Vector Algorithm #0
DOTS) Multi-Scalar Algorithm DOIDABH) Vector Algorithm #l

DABHEB) Vector Algorithm #2

15

50

005 6 6 10
amount of noise

Pigore 6 CPU times in seconda versus number of noise hits present in the detee-
tar. Five fivochamber Monte Carlo tracks are the underlying event. CPU times
represent the analysis of 20000 events.

SOLID) Scalar Algorithm PAITERH) Vector Algorithm #0
DOTS) Multi-Scalar Algorithm DOTDABH) Vector Algorithm #l

DABllE8) Vector Algorithm #2

in Figures 3-5. The vector algorithms are relatively insensitive to noise, as expected.

The scalar algorithm becomes slightly less efficient with noisy events, but the multi-scalar

algorithm is strongly affected by noise in the data. For the scalar and vector algorithms,

the effect of five noise hits is comparable to having an additional track in each event (one

trackefive hits).

B. Single-View Detector: 4 planes x 85 wires

A single-view detector similar in size to a view in the E-711 detector was chosen as

the second model for study. The E-711 detector has 256 wires in its X view. Since the

E-711 Cyber 205 code uses a virtual detector that maps three real wires to one virtual

wire, 85 wires was chosen as the detector size. The single view was set up in a projective

geometry, using the data encoded in the E-711 Cyber 2055 program to match the detector

as closely as possible. Events were generated with randomly-placed four-chamber tracks.

Random noise was added for some of the tests. A track dictionary for four-chamber tracks

was created; 25 052 four-chamber tracks are possible. A dictionary of track lists sorted by

wire for each plane was generated for the Mark III vector algorithms-this dictionary had

a maximum track index of 432.

14

The scalar algorithm, vector algorithm #l and several variations of vector algorithm

#Z were tested with this detector. Vector algorithm #l wss found to take six times as

long as vector algorithm #a--and was dropped after preliminary testing. Figure 6 displays

results for this single-view detector when no noise is present. NOTE: The CPU times are

plotted against the theoretica numberof tracks created in the Monte Carlo detector-NOT

the number of found tracks, which can become quite large for high chamber multiplicities.

Vector algorithm #3 is a loop-unrolled version of vector algorithm #2. Vector algorithm

#4 contains an additional Mark III algorithm element. The track counters (or dictionary)

for this algorithm are subdivided into groups of 128 tracks. A bit-mapped array containing

an entry for each track subgroup is used to record hits. As the algorithm loops through

the detector planes and processes the track lists for hit wires, a bit corresponding to the

respective plane is set in each of the bit-mapped elements corresponding to listed tracks.

Hit counters are still kept for individual tracks. Rather than search for hit counters with

value four to find the candidate tracks, the bit-mapped array is searched for elements with

full maps. These elements correspond to track subgroups that may contain a candidate

track. These track subgroups are then searched for candidate tracks. This procedure is

effective because the density of four-chamber tracks in the dictionary is quite low.

0 5 10 15 20 25 30
number of tracks

Figure S CPU times in seconda vermm number of four-chamber Monte Carlo tracks
present in input events. CPU timea represent the analysis of 2500 eventa.

SOLID) Scalar Algorithm DOTDASH) Vector Algorithm #S
DOTS) Vector Algorithm #Z DASHES) Vector Algorithm #4

16

Figure 6 shows that at low multiplicities, vector algorithm #4 has a substantial

advantage over the other vector algorithms. The effect of loop unrolling is clear from the

difference between vector algorithms #2 and #3. The different behavior at high chamber

multiplicity between the scalar and vector algorithms is also quite apparent in Figure 6.

However, the relevant number of tracks for E-711 is approximately 15 three- and four-hit

tracks per view found by the pattern recognition. This would correspond to ten or less

four-chamber Monte Carlo input tracks. Timing results for four-chamber tracks with ten

or less Monte Carlo input tracks clearly favor the scalar algorithm. However, the E-711

Cyber 205 code searches for three- and four-chamber tracks, so more work needs to be

done. Discussion of the effects of inefficiencies and searches for incomplete tracks will be

presented in a following section.

300. I I I I , . I I . , . I . . , . I I I

250 7
.

i

200 _ -...............“““’
_.a.- .-.,.,.-.-.-.--:

.._._._.-.-.-*-.
0 150 -
: __---

_-c-
2 100 7 cc_-

_*--
u . _e--

50 -

0
0 10 20 30 40

amount of noise
Figure 7 CPU times in seconds versus number ofnoise hits present in the detector.
Six four-chamber Monte Carlo tracks cue the underlying event. CPU timea represent
the analysis of 2500 events.

SOLID) Scalar Algorithm DOTDASH) Vector Algorithm #S
DOTS) Vector Algorithm #2 DASlil3S) Vector Algorithm #4

Figures 7 and 8 present timing results for the above pattern recognition algorithms

in the presence of random noise in the detector. As in the previous model, the number of

noise hits is variable over the base event of six or twelve Monte Carlo input tracks. No

inefficiencies were included in the simulation. As expected from the smaller model, the

vector algorithms #2 and #3 are fairly insensitive to noise. Vector algorithm #3 is slightly

more sensitive to noise because its bit-mapped array elements for the track subgroups will

16

0 10 20 30 40
amount of noise

Figure 8 CPU times in seconds YMU~ number of noise hits present in the detector.
Twelve four-chamber Monte Carlo tracks are the underlying event. CPU timea
represent the analysis of 2500 events.

SOLID) Scalar Algorithm DWDASH) Vector Algorithm #S
DOTS) Vector Algorithm #2 DASiiJIS) Vector Algorithm #4

be filled by the noise and cause additional track subgroups to be searched. The scalar

algorithm continues to be the most sensitive to noise. For all of these algorithms, the

effect of four additional noise hits on the pattern recognition timing is comparable to

having an additional track in each event (one track==+four hits).

C. 3-Dimensional Four-View Detector

The initial intent of this simulation was to use an E-711 look-alike detector. How-

ever, it wss quickly discovered that the FPS-164 had only 512K 64-bit words-and vector

algorithm #4 of the previous section used over one-half of the available memory for only

a single detector view. Thus, a detector with four identical views, but oriented at O’,

90°, +lO” and -lo’, would substitute. This view was taken to be the single view used in

the previous section. The goal of this simulation was to perform pattern recognition in

the four views including three and four-hit tracks and then to perform three-dimensional

matching to create the reel particle tracks.

Vector algorithm #4 w&s adapted to this simulation. A three-dimensional event

generator was created, and three- and four-chamber tracks could be found in each of the

four detector planes. Only one pass through the data is used in the vector algorithm to find

both the three- and four-chamber tracks. The information is stored in the hit counters-

17

and the search through these counters can easily find both track types. A problem w&s

soon realized, however. For each four-chamber track found, several adjacent three-chamber

tracks were found. These adjacent tracks had three hits in common with the four-chamber

track, so no unique track was specified. A solution was to adapt another component of the

Mark III algorithm2-the auxiliary track list. The auxiliary track list contains, for each

track, a list of the tracks with which it shares all but one hit. Thus, after four-chamber

tracks are found, three-chamber tracks on the auxiliary lists of these four-chamber tracks

can be eliminated from the data. Memory again proved to be the limiting factor, as the

detector had to be cut to 65 wires in order to fit all the dictionaries into the FPS-164

memory.

Due to memory constraints and lack, therefore, of ability to produce a competitive

E-711 analysis program on the FPS-164, work on this simulation has been discontinued.

IV. Conclusions

Vectorised pattern recognition algorithms have been compared to traditional scalar

algorithms in single-view detectors on the FPS-164. The vectorization has been limited to

the track recognition phase of the data analysis. Results show that the traditional scalar

algorithm outperforms the vectorized algorithms in chamber multiplicities of physical in-

terest.

This simulation did not have raw data tapes available. The E-711 analysis code of

Georgiopoulos’ et al. uses vectorisation in event data unpacking as well ss in the single

view pattern recognition. The simulations on the FPS-164 did not include this vectorised

data unpacking. It is not known what portion of the E-711 speed increase is due to the

vectorized data unpacking. All other E-711 cod-track fitting and three-dimensional

matching-is done with scalar (non-vectorized) code.

Another area for consideration is the effect of incomplete tracks on the pattern recog-

nition. The single-view simulations searched for full-detector tracks only. Production anal-

ysis codes use incomplete tracks in event reconstruction. This effect has not been tested on

the FPS-164, but rough estimates can be presented. Vector algorithms, in general, make

only one pass through the data and create an array of hit counters. All incomplete tracks

of interest can be found from this array. However, as mentioned above, many adjacent

18

tracks must be eliminated from this array by using auxiliary lists. The time required for

this arbitration via auxiliary lists must be added to the vector algorithm. Incomplete

tracks would have a more substantial impact on scalar algorithms, however. An initial

pass through the scalar algorithm would be used to find the full-detector tracks. The hits

for these tracks would often be deleted from the data in order to limit confusion. Then

for a detector such as E-711, two additional passes on the reduced data would need to be

made to recognize the tracks with one missing hit. Thus, the times for the scalar pattern

recognition would increase by a factor of three or less, while the vector algorithm would

have an increase due to the auxiliary list searching (50% or less???). These factors would

be used to adjust the figures presented in previous sections. In any case, vectorization does

not appear to yield significant gains on the FPS-164.

One might expect that a Floating Point Systems computer would give the best results

for a floating-point intensive algorithm. The vector algorithms use very little bloating point

arithmetic-mostly integer and logical calculations are involved. Such algorithms may not

perform well, in general, on the FPS-164. Indeed, the APMATH64 library is oriented

toward matrix and other substantially floating point problems. Another indication of this

is the observation that the scalar algorithm tended to generate denser machine code for

the FPS-164. However, it is also difficult to know whether the algorithms (scalar or vector)

employed have utilized the FPS-164 to greatest advantage.

Another advantage of the scalar algorithm is compatibility with VAX FORTRAN.

The FPS-164 APFTN64 scalar program was able to run unchanged under VAX FOR-

TRAN. APFTN64 is closer (fewer extensions) to ANSI-standard FORTRAN than VAX

FORTRAN, but several common and useful extensions are available (user-defined symbols

may contain up to 31 characters, including the dollar sign ($) and the underscore (-)). The

FPS-164 was quite easy to use-its Single Job Executive (SJE) operating system and its

Job Definition Language (JDL) were well documented and the commands were simple and

understandable. Program development (editing, compiling, etc.) was performed on the

front-end machine in a convenient and familiar environment. Direct access to tape drives

for the FPS-164 is not mentioned in the FPS-164 Operating System Manual;6 the only

mention of tape drives is the ability to PRESERVE and RESTORE FPS-164 files using front-

end computer disks or tape drives. Copying tapes through the front-end computer onto the

19

FPS-164 disk subsystem would be impractical for production analysis. Similarly, direct

access of front-end computer tape drives or disks from the FPS-164 would probably be

too slow. Use of the APEX64 programming method, where a front-end computer passes

numerically-intensive computations to the FPS-164 also appears impractical, in view of

the amount of data involved (data transfers also involve conversions to and from FPS-164

formats for integers and floating point numbers).

The FPS-164 and Cyber 205 used for the E-711 analysis have substantially different

architectures. The Cyber 205 is bit-addressable in vector mode-and this w&s exploited in

the E-711 code in the gathering of the candidate tracks from the dictionary. The FPS-164

deals only with 64-bit words-and algorithms which use smaller quantities can be quite

inefficient. The differences in architecture make it difficult to compare results between the

FPS-164 and Cyber 205.

Acknowledgements

I wish to thank H. Montgomery and P. Lebrun for many useful discussions, particu-

larly regarding details of the scalar track-finding algorithm. I also wish to thank P. Lucas

and the Fermilab Accelerator Division for their cooperation and use of their FPS-164

Scientific Computer.

References

1) C. H. Georgiopoulos, J. H. Goldman, D. Levinthal and M. F. Hodous, Nuclear In-
struments and Methods in Physics Research A249, 451 (1986).

2) J. J. Becker et al., Nuclear Instruments and Methods in Physics Research A236, 502
(1985).

3) V. Zacharov, CERN DD/82/1, (1982).
4) APFTN64 User’s Guide, Floating Point Systems, Inc., Portland, OR, 1985.
5) C. Georgiopoulos, private communication, E-711 Cyber 205 data analysis code.
6) FPS-164 Operating System Manual, Volumes l-3, Floating Point Systems, Inc.,

Portland, OR, 1985.
7) P. Lebrun, private communication, TFFTE tracking library code and documentation.

21

